1,179 research outputs found

    Response of a catalytic reaction to periodic variation of the CO pressure: Increased CO_2 production and dynamic phase transition

    Full text link
    We present a kinetic Monte Carlo study of the dynamical response of a Ziff-Gulari-Barshad model for CO oxidation with CO desorption to periodic variation of the CO presure. We use a square-wave periodic pressure variation with parameters that can be tuned to enhance the catalytic activity. We produce evidence that, below a critical value of the desorption rate, the driven system undergoes a dynamic phase transition between a CO_2 productive phase and a nonproductive one at a critical value of the period of the pressure oscillation. At the dynamic phase transition the period-averged CO_2 production rate is significantly increased and can be used as a dynamic order parameter. We perform a finite-size scaling analysis that indicates the existence of power-law singularities for the order parameter and its fluctuations, yielding estimated critical exponent ratios β/ν0.12\beta/\nu \approx 0.12 and γ/ν1.77\gamma/\nu \approx 1.77. These exponent ratios, together with theoretical symmetry arguments and numerical data for the fourth-order cumulant associated with the transition, give reasonable support for the hypothesis that the observed nonequilibrium dynamic phase transition is in the same universality class as the two-dimensional equilibrium Ising model.Comment: 18 pages, 10 figures, accepted in Physical Review

    Transition from accelerated to decelerated regimes in JT and CGHS cosmologies

    Full text link
    In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the cosmic scale function, its acceleration, the energy density and the hydrostatic pressure are the physical quantities obtained in through the analysis.Comment: To appear in Europhysics Letter

    Increasing hate crime reporting: narrowing the gap between policy aspiration, victim inclination and agency capability

    Get PDF
    This paper aims to answer the question: can the aspiration for increasing hate crime reporting contained in the United Kingdom Government's action plan on hate crime (2016-2020) be achieved by local agencies in England and Wales? Drawing on findings from research into the barriers to hate crime reporting and research undertaken by the authors and colleagues in 2012 to 2013 in a county in England, this paper will examine the impact of: victim decision making; and the efficacy of third party hate crime reporting centres on hate crime reporting. It will propose two solutions to facilitate increased reporting in the UK and other jurisdictions: an end to end, criminal justice system, hate crime service framework to more effectively support victims; and a typology of reporting provision which will better enable commissioning agencies to assess the capability and capacity of hate crime services

    Kinetic phase diagram for CO oxidation on Pt(210): Pattern formation in the hysteresis and oscillation regions

    Get PDF
    The reactive behavior of catalytic CO oxidation on Pt(210) is studied by means of combined reaction rate measurements and photoelectron emission microscopy (PEEM). These methods allow an investigation of the phenomena at macroscopic and mesoscopic level, respectively. The external control parameters (flow rate, CO and oxygen partial pressures, surface temperature and scanning rates of pressure and temperature) are systematically varied to reveal various reactive regions in parameter space. The macroscopic measurements for a given temperature and flow rate (under isothermal conditions) show that lower pressures lead to a pronounced clockwise hysteresis in the production rate of CO2, while increasing pressures cause a systematic narrowing leading to a crossing of the two hysteresis branches into a region of counterclockwise hysteresis. A further pressure increase leads to macroscopic temporal oscillations. Mesoscopic spatiotemporal oscillations appear at the same conditions. The resulting macroscopic isothermal kinetic phase diagram exhibits a cross-shaped characteristic similar to that previously obtained for the Pd(110) surface. The mesoscopic lateral distribution of CO and oxygen adsorbed on the surface is monitored with the photoelectron emission microscope during the reaction at isothermal conditions and different constant oxygen pressures. The observed mesoscopic spatiotemporal patterns, such as islands, waves, target patterns and spirals, are correlated via the external control parameters with different regions in the macroscopic isothermal phase diagram. The results are compared with previous data of CO oxidation on other surfaces, like Pd(110) and Pt(110)

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200

    Macroscopic and mesoscopic characterization of a bistable reaction system: CO oxidation on Pt(111) surface

    Get PDF
    The catalytic oxidation of CO by oxygen on a platinum (111) single-crystal surface in a gas-flow reactor follows the Langmuir–Hinshelwood reaction mechanism. It exhibits two macroscopic stable steady states (low reactivity: CO-covered surface; high reactivity: O-covered surface), as determined by mass spectrometry. Unlike other Pt and Pd surface orientations no temporal and spatiotemporal oscillations are formed. Accordingly, CO+O/Pt(111) can be considered as one of the least complicated heterogeneous reaction systems. We measured both the macroscopic and mesoscopic reaction behavior by mass spectrometry and photoelectron emission microscopy (PEEM), respectively, and explored especially the region of the phase transition between low and high reactivity. We followed the rate-dependent width of an observed hysteresis in the reactivity and the kinetics of nucleation and growth of individual oxygen and CO islands using the PEEM technique. We were able to adjust conditions of the external control parameters which totally inhibited the motion of the reaction/diffusion front. By systematic variation of these conditions we could pinpoint a whole region of external control parameters in which the reaction/diffusion front does not move. Parallel model calculations suggest that the front is actually pinned by surface defects. In summary, our experiments and simulation reveal the existence of an “experimental” bistable region inside the “computed” bistable region of the reactivity diagram (S-shaped curve) leading to a novel dollar ($)-shaped curve

    Decay of metastable phases in a model for the catalytic oxidation of CO

    Full text link
    We study by kinetic Monte Carlo simulations the dynamic behavior of a Ziff-Gulari-Barshad model with CO desorption for the reaction CO + O \to CO2_2 on a catalytic surface. Finite-size scaling analysis of the fluctuations and the fourth-order order-parameter cumulant show that below a critical CO desorption rate, the model exhibits a nonequilibrium first-order phase transition between low and high CO coverage phases. We calculate several points on the coexistence curve. We also measure the metastable lifetimes associated with the transition from the low CO coverage phase to the high CO coverage phase, and {\it vice versa}. Our results indicate that the transition process follows a mechanism very similar to the decay of metastable phases associated with {\it equilibrium} first-order phase transitions and can be described by the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by nucleation and growth. In the present case, the desorption parameter plays the role of temperature, and the distance to the coexistence curve plays the role of an external field or supersaturation. We identify two distinct regimes, depending on whether the system is far from or close to the coexistence curve, in which the statistical properties and the system-size dependence of the lifetimes are different, corresponding to multidroplet or single-droplet decay, respectively. The crossover between the two regimes approaches the coexistence curve logarithmically with system size, analogous to the behavior of the crossover between multidroplet and single-droplet metastable decay near an equilibrium first-order phase transition.Comment: 27 pages, 22 figures, accepted by Physical Review

    The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)

    Full text link
    Static and dynamic changes induced by adsorption of atomic hydrogen on the NiAl(110) lattice at 130 K have been examined as a function of adsorbate coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages the hydrogen is itinerant because of quantum tunneling between sites and exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate mediated interactions produce an ordered superstructure with c(2x2) symmetry, and at higher coverages, hydrogen exists as a disordered lattice gas. This picture of how hydrogen interacts with NiAl(110) is developed from our data and compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference

    A LEED structural analysis of the Co(100) surface

    Get PDF
    The structure of the clean Co(1010) surface has been analysed by LEED. Application of a recently developed computational scheme reveals the prevalence of the termination A in which the two topmost layers exhibit a narrow spacing of 0.62 Å, corresponding to a 12.8(±0.5)% contraction with respect to the bulk value, while the spacing between the second and third layer is slightly expanded by 0.8(±0.2)%

    Children of prisoners: exploring the impact of families' reappraisal of the role and status of the imprisoned parent on children's coping strategies

    Get PDF
    Qualitative data from a larger study on the impact of parental imprisonment in four countries found that children of prisoners face fundamentally similar psychological and social challenges. The ways that children cope, however, are influenced by the interpretative frame adopted by the adults around them, and by how issues of parental imprisonment are talked about in their families. This article argues that families have to reappraise their view of the imprisoned parent and then decide on their policy for how to deal with this publicly. Their approach may be based on openness and honesty or may emphasise privacy and secrecy, or a combination of these. Children are likely to be influenced by their parents'/carers' views, although these may cause conflict for them. Where parents/carers retain a positive view of the imprisoned parent, children are likely to benefit; where parents/carers feel issues of shame and stigma acutely, this is likely to be transmitted to their children. This is important for social workers and practitioners involved in supporting prisoners' families and for parenting programmes
    corecore